List-Distinguishing Colorings of Graphs

نویسندگان

  • Michael Ferrara
  • Breeann Flesch
  • Ellen Gethner
چکیده

A coloring of the vertices of a graph G is said to be distinguishing provided that no nontrivial automorphism of G preserves all of the vertex colors. The distinguishing number of G, denoted D(G), is the minimum number of colors in a distinguishing coloring of G. The distinguishing number, first introduced by Albertson and Collins in 1996, has been widely studied and a number of interesting results exist throughout the literature. In this paper, the notion of distinguishing colorings is extended to that of listdistinguishing colorings. Given a family L = {L(v)}v∈V (G) of lists assigning available colors to the vertices of G, we say that G is L-distinguishable if there is a distinguishing coloring f of G such that f(v) ∈ L(v) for all v. The list-distinguishing number of G, Dl(G), is the minimum integer k such that G is L-distinguishable for any assignment L of lists with |L(v)| = k for all v. Here, we determine the list-distinguishing number for several families of graphs and highlight a number of distinctions between the problems of distinguishing and list-distinguishing a graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

Defective List Colorings of Planar Graphs

We combine the concepts of list colorings of graphs with the concept of defective colorings of graphs and introduce the concept of defective list colorings. We apply these concepts to vertex colorings of various classes of planar graphs. A defective coloring with defect d is a coloring of the vertices such that each color class corresponds to an induced subgraph with maximum degree at most d. A...

متن کامل

Colorings and Orientations of Matrices and Graphs

We introduce colorings and orientations of matrices as generalizations of the graph theoretic terms. The permanent per(A[ζ|ξ]) of certain copies A[ζ|ξ] of a matrix A can be expressed as a weighted sum over the orientations or the colorings of A . When applied to incidence matrices of graphs these equations include Alon and Tarsi’s theorem about Eulerian orientations and the existence of list co...

متن کامل

Neighbor-distinguishing k-tuple edge-colorings of graphs

This paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum number of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.

متن کامل

Vertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs

This paper studies edgeand total-colorings of graphs in which (all or only adjacent) vertices are distinguished by their sets of colors. We provide bounds for the minimum number of colors needed for such colorings for the Cartesian product of graphs along with exact results for generalized hypercubes. We also present general bounds for the direct, strong and lexicographic products.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011